Accuracy, Stability and Systems of Equations

Numerical Solutions of Ordinary Differential Equations – Accuracy, Stability and Systems of Equations

Larry Caretto Mechanical Engineering 501AB **Seminar in Engineering Analysis**

November 20, 2017

Northridge

Review Implicit Methods

- Methods discussed previously are called explicit
	- Can find y_{n+1} in terms of values at n
	- Use predictors to estimate y values between y_n and y_{n+1}
- Implicit methods use f_{n+1} in algorithm
- Usually require approximate solution
- Have better stability but require more work than explicit methods

3

5

• Trapezoid method is an example **Northridge**

Review Multistep Methods

- Multistep methods use information from previous steps for improved accuracy with less work than single step methods
- Need starting procedure that is a single step method
- Derivation based on interpolation polynomials which are then integrated
- Predictor-corrector process
- Derivation provides error estimate

Accuracy, Stability and Systems of Equations

10

12

• Get estimate of truncation error, E_C , from predictor-corrector difference

 $E_C = \frac{19}{270} \left(y_{n+1}^P - y_{n+1}^C \right)$

- If $e_{min} \le E_C \le e_{max}$, do not change h
- If E_C < e_{min} double step size, h

• If E_C > e_{max} half step size, h

Northridge

11

7

Review Bulirsch-Stoer Method • Three main ideas – Use large step size H and compute results at $x + H$ for several values of n then extrapolate results to $h = 0$

- Use midpoint method whose truncation error is $Ah^n + Bh^{n+2} + Ch^{n+4}$... to improve accuracy of interpolation process
- Use rational function approximation instead of simple polynomial interpolation for extrapolating to $h = 0$

• Mainly theoretical concepts

More Basic Concepts

- We cannot know the *accuracy* of numerical solutions, but we can use error approximations to control step size
- We know the *order* of the *global* truncation error
- *Stability* refers to the ability of a numerical algorithm to damp any errors introduced during the solution
- Unstable solutions grow without bound 13 **Northridge**

Northridge

Stability of Exact Solutions • Exact solutions to differential equations may be unstable

- Solutions of the form Ce^{at} with $a > 0$ are unstable because they grow without bound as $t \rightarrow \infty$
- Judge stability of a numerical method by test on an exact solution that is stable

15

• Test $y' = -ay$ whose solution is $y = e^{-at}$. where a is a positive constant

Accuracy, Stability and Systems of Equations

November 20, 2017

General Stability • Look at trial ODE $y' = f = -ay$

- Define growth or amplification factor, G
- $= y_{n+1}/y_n$ • Euler method has $y_{n+1} = y_n(1 + ah)$ so G $= y_{n+1}/y_n = 1 + ah$
- For ah ≤ 1 (G \leq 2), method was physically realistic if not accurate and method was unstable for ah > 2 (G > 3)
- General approach is to seek relation for h (or ah) that keeps G stable 21 **Northridge**

Implicit Methods • Contrast between implicit and explicit methods discussed previously – Explicit methods find y_{n+1} in terms of values at x_n (may use estimated y values between x_n and x_{n+1}) • Implicit methods use f_{n+1} in algorithm • Require iterative solution or series

expansion of derivative expression for f • Examine stability of trapezoid method for usual test problem $y' = -ay$

23

ME 501A Seminar in Engineering Analysis Page 4

Runge-Kutta-Fehlberg

- Uses two equations to compute y_{n+1} , one has $O(h^5)$, the other $O(h^6)$ error
- Requires six derivative evaluations per step (same evaluations used for both equations)
- The error estimate can be used for step size control based on an overall 5th order error
- Cask-Karp version and Runge-Kutta-Verner use same idea

31

- $y(0) = 1$ and $z(0) = -1$ with h = .1
- Details of first step from y_0 to y_1 • $k_{(1)y} = h[-y + z] = 0.1[-1 + (-1)] = -.2$
- $k_{(1)z} = h[y z] = 0.1[1 (-1)] = .2$
- $k_{(2)y} = h[-(y+k_{(1)y}/2) + z + k_{(1)z}/2] = 0.1$ -(1 + -0.2/2) + (-1 + .2/2)] = -.18
- 37 • $k_{(2)z} = h[(y + k_{(1)y}/2) - (z + k_{(1)z}/2)] = 0.1[(1$ + -0.2)/2 - (-1 + .2/2)] = .18

