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Outline
• Review last class
• Analysis of numerical algorithms
• Stability of numerical solutions

– Explicit versus implicit approaches
• Step size variation for error control
• Error control for multistep methods with 

constant and variable step size
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Review Implicit Methods
• Methods discussed previously are 

called explicit
– Can find yn+1 in terms of values at n
– Use predictors to estimate y values 

between yn and yn+1

• Implicit methods use fn+1 in algorithm
• Usually require approximate solution
• Have better stability but require more 

work than explicit methods
• Trapezoid method is an example
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Review Trapezoid Method

• Algorithm

• Have to handle fn+1 dependence of yn+1
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• Simple iteration

• Newton 
iteration

• Taylor series for fn+1
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Review Multistep Methods
• Multistep methods use information from 

previous steps for improved accuracy 
with less work than single step methods

• Need starting procedure that is a single 
step method

• Derivation based on interpolation 
polynomials which are then integrated

• Predictor-corrector process
• Derivation provides error estimate
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Review Adams Methods

• Predictor corrector method

• Predictor equation uses four points
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Review Step Size Control

• Get estimate of truncation error, EC, 
from predictor-corrector difference

• If emin ≤ EC ≤ emax, do not change h

• If EC < emin double step size, h

• If EC > emax half step size, h
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Review Grid Size Changes

• Keep extra values fi-4 and fi-5 in memory to 
be ready for grid doubling
– fi-3,new = fi-5; fi-2,new = fi-3; fi-1,new = fi-1; fi,new = fi+1

• Grid halving requires interpolation for 
missing values in old grid
– fi-2,new = fi-1; fi,new = fi

 iiiiinewi ffffff 3514070285
128

1
1234,1  

 iiiiinewi ffffff   1234,3 2454163
64

1

9

Review Extrapolation Methods

• Use infinite series truncation error 
dependence on h to get better estimate 
from results on two values of h

• Analyze truncation error as infinite 
series and eliminate lowest order term
– True value, t = n(h) + Ahm + Bhm+a
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Review Midpoint Method

• Take big step from x to x + H in n steps
– Start with results at x and define z0 = y(x)

– Compute z1 = z0 + hf(x, z0)

– Central difference intermediate steps
• zm+1 = zm-1 + 2h(x+mh,zm)   m = 1, 2, .. n-1

– Final value at x + H, called yn, is an 
average of the central difference value, zn, 
and a backward difference value zn-1 + 
hf(x+H,zn)

• yn = [ zn + zn-1 + hf(x+H,zn) ] / 2
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Review Bulirsch-Stoer Method

• Three main ideas
– Use large step size H and compute results 

at x + H for several values of n then 
extrapolate results to h = 0

– Use midpoint method whose truncation 
error is Ahn + Bhn+2 + Chn+4 … to improve 
accuracy of interpolation process

– Use rational function approximation instead 
of simple polynomial interpolation for 
extrapolating to h = 0
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Some Basic Concepts
• A finite difference equation is 

consistent with the corresponding 
differential equation if both equations 
give the same result as h  0

• A numerical method is convergent with 
the solution of the ODE if the numerical 
solution approaches the actual solution 
as h  0 (with increase in numerical 
precision at smaller h)

• Mainly theoretical concepts
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More Basic Concepts

• We cannot know the accuracy of 
numerical solutions, but we can use 
error approximations to control step size

• We know the order of the global
truncation error

• Stability refers to the ability of a 
numerical algorithm to damp any errors 
introduced during the solution

• Unstable solutions grow without bound
14

More on Stability
• Finite difference equations in numerical 

algorithms, when iterated, may  
numerically increase without bound

• Stability usually is obtained by keeping 
step size h small, sometimes smaller 
than the h required for accuracy

• For most ODEs stability is not a 
problem, but it is for stiff systems of 
ODEs and for partial differential 
equations
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Stability of Exact Solutions

• Exact solutions to differential equations 
may be unstable

• Solutions of the form Ceat with a > 0 are 
unstable because they grow without 
bound as t  

• Judge stability of a numerical method by 
test on an exact solution that is stable

• Test y’ = -ay whose solution is y = e-at, 
where a is a positive constant
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Euler Solution of Decaying Exponential
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Euler Solution for Increasing Exponential
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Examine Euler Stability
• Look at test equation with y’ = f = -ay
• Exact solution is y = y0e-ax so that y/y0 is 

a function of ax
• Euler method: yn+1 = yn + hfn
• With fn = -ayn the Euler method equation 

for yn+1, yn+1 = yn + hfn, becomes yn+1 = 
yn + h(-ayn) = yn(1 – ah)

• Compare various numerical solutions to 
exact solution for different values of ah 
in following plot of y/y0 versus ax
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Stability of Euler Method
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Chart Observations
• Used Euler method: yn+1 = yn + hfn to 

solve y’ = -ay
• For ah  1, method looks physically 

realistic if not accurate
• For 1 < ah  2, method is not physically 

realistic but is bounded (stable)
• Method is unstable for ah > 2
• Not shown on chart is that we usually 

need ah << 2 for accuracy in Euler’s 
method
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General Stability
• Look at trial ODE y’ = f = –ay
• Define growth or amplification factor, G 

= yn+1/yn

• Euler method has yn+1 = yn(1 + ah) so G 
= yn+1/yn = 1 + ah 

• For ah  1 (G  2), method was 
physically realistic if not accurate and 
method was unstable for ah > 2 (G > 3)

• General approach is to seek relation for 
h (or ah) that keeps G stable
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General Stability II
• Use same test equation with f = -ay with 

positive a (negative a is unstable ODE)
• Find amplification factor G for method 
• If growth is bounded for any combi-

nation of physical parameters and step 
size, h, method is unconditionally stable

• Conditionally stable method is stable 
only for some combination of step size 
and physical parameters giving step 
size limit
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Implicit Methods
• Contrast between implicit and explicit 

methods discussed previously
– Explicit methods find yn+1 in terms of values 

at xn (may use estimated y values between 
xn and xn+1)

• Implicit methods use fn+1 in algorithm
• Require iterative solution or series 

expansion of derivative expression for f
• Examine stability of trapezoid method 

for usual test problem y’ = –ay
24

Implicit Stability

• Trapezoid method equation from 
previous class – basic equation and 
computation with series expansion for fn+1
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Implicit Example

• For dy/dx = f = – ay, f/x = 0 and 
f/y = –a
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• Here yn+1 = G yn with G = (2 – ha)/(2 + ha)

• |G| < 1 if ha > 0; stable for any h if a > 0
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Trapezoid Method Stability
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Chart Observations

• Trapezoid method results much closer 
to exact solution than Euler results
– Expected because of O(h3) local error

• For values of ah > 2, solutions 
undershoot the final value of y = 0
– Solutions remain stable, but unrealistic, 

giving oscillations around y = 0

• Stability is not the same as accuracy

• Must have both
28

Error Control

• How do we choose h to maintain 
desired accuracy?

• Want to obtain a result with some 
desired small global error

• Can just repeat calculations with smaller 
h until two results are sufficiently close

• Can use algorithms that estimate error 
and adjust step size during the 
calculation based on the error
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Runge-Kutta Error Control

• Control error by doing integration with h 
and 2h along all the integration
– Integration with 2h step requires 3 

additional function evaluations per 2 steps

– Analyze local truncation error, which is 
O(h5) for both steps, at even step locations
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Runge-Kutta Error Control II

• y2h – yh =  is measure of truncation error

• User specifies D, the desired error
– Many ways to specify this, single value, 

relative values, relative to increments for y in 
one step

• Since error scales as h5, we can adjust 
step size such that hnew = hold|D/|1/5

• Typically use safety factor to avoid making 
hnew too large
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Runge-Kutta-Fehlberg
• Uses two equations to compute yn+1, 

one has O(h5), the other O(h6) error
• Requires six derivative evaluations per 

step (same evaluations used for both 
equations)

• The error estimate can be used for step 
size control based on an overall 5th

order error
• Cask-Karp version and Runge-Kutta-

Verner use same idea
32

Runge-Kutta-Fehlberg II

• One algorithm on following slides

• Typical formula components below

• yn+1= yn + (16k1/135 + 6656k2/12825 …

• k3 = hf(xn + 3h/8, yn + 3k1/32 + 9k2/32)

• Error = k1/360 - 128k3/4275 …

• hnew = hold|EDesired/Error|1/4

• EDesired is set by user

• RKF45 code by Watts and Shampine

RKF45 k Equations
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RKF45 Equations for yn+1 / hnew
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• Difference between yn+1 and y*n+1 used 
for error estimate to adjust step size
– Rmax is user-specified maximum error per 
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Solving Simultaneous ODEs
• Apply same algorithms used for single 

ODEs
– Must apply each part of each algorithm 

step to all equations in system before 
going on to next step

– Key is having consistent x and y values in 
determination of fi(x,y)

– All yi values in y must be available at the 
same x point when computing the fi

– E.g., in Runge-Kutta we must evaluate k1
for all equations before finding k2

36

Runge-Kutta for ODE System
– y(n) is vector of dependent variables at x = xn

– k(1), k(2), k(3), and k(4), are vectors containing 
intermediate Runge-Kutta results

– f is a vector containing the derivatives

– k(1) = hf = hf(xn, y(n))

– k(2) = hf(xn + h/2, y(n) + k(1)/2)

– k(3) = hf(xn + h/2, y(n) + k(2)/2)

– k(4) = hf(xn + h, y(n) + k(3))

– y(n+1) = (k(1) + 2k(2) + 2k(3) + k(4))/6
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ODE System by RK4

• dy/dx = –y + z and dz/dx = y – z with 
y(0) = 1 and z(0) = -1 with h = .1

• Details of first step from y0 to y1

• k(1)y = h[-y + z] = 0.1[-1 + (-1)] = -.2

• k(1)z = h[y - z] = 0.1[1 - (-1)] = .2

• k(2)y = h[-(y+ k(1)y/2) + z + k(1)z/2] = 0.1[   
-(1 + -0.2/2) + (-1 + .2/2)] = -.18

• k(2)z = h[(y+ k(1)y/2) –(z + k(1)z/2)] = 0.1[(1 
+ -0.2)/2 - (-1 + .2/2)] = .18

38

ODE System by RK4 II

• k(3)y = h[-(y+ k(2)y/2) + z + k(2)z/2] = 0.1[   
-(1 + -0.18/2) + (-1 + .18/2)] = -.182

• k(3)z = h[(y+ k(2)y/2) –(z + k(2)z/2)] = 0.1[(1 
+ -0.18)/2 - (-1 + .18/2)] = .182

• k(4)y = h[-(y+ k(3)y) + z + k(3)z] = 0.1[  -(1 + 
-0.182) + (-1 + .182)] = -.1636

• k(4)z = h[(y+ k(3)y) –(z + k(3)z)] = 0.1[ (1  + 
-0.182) - (-1 + .182)] = .1636

39

ODE System by RK4 III

• yi+1 = yi +  (k(1)y + 2k(2)y + 2k(3)y + k(4)y )/6 
=  1  + [  (–.2)  +  2(–.18) +  2(–.182)  + 
(–.1636)]/6 = .8187  (here i = 0)

• zi+1 = zi +  (k(1)z + 2k(2)z + 2k(3)z + k(4)z )/6 
= –1 + [(.2) + 2(.18) + 2(.182) + 
(.1636)]/6 = –.8187

• Continue in this fashion until desired 
final x value is reached
– Note all km computed before any km+1

• No x dependence for f in this example


