
Accuracy, Stability and Systems of
Equations

November 20, 2017

ME 501A Seminar in Engineering
Analysis Page 1

Numerical Solutions of Ordinary
Differential Equations – Accuracy,
Stability and Systems of Equations

Larry Caretto

Mechanical Engineering 501AB

Seminar in Engineering Analysis

November 20, 2017

2

Outline
• Review last class
• Analysis of numerical algorithms
• Stability of numerical solutions

– Explicit versus implicit approaches
• Step size variation for error control
• Error control for multistep methods with

constant and variable step size

3

Review Implicit Methods
• Methods discussed previously are

called explicit
– Can find yn+1 in terms of values at n
– Use predictors to estimate y values

between yn and yn+1

• Implicit methods use fn+1 in algorithm
• Usually require approximate solution
• Have better stability but require more

work than explicit methods
• Trapezoid method is an example

4

Review Trapezoid Method

• Algorithm

• Have to handle fn+1 dependence of yn+1

)(2/ 3
11 hOhffyy nnnn

 2/)(
1,1

)1(
1 hyxffyy m

nnnn
m

n

n

n
n

nn

y
fh

h
x
f

hf
yy

2
1

2

2

1

)(

1

)(
11

)(
11)(

1
)(
1

)1(
1

2
,

2
,

2
m

n

m
nn

m
nnn

n
m

n
m

n
m

n

y
fh

yxf

yxhfhf
yy

yy

• Simple iteration

• Newton
iteration

• Taylor series for fn+1

5

Review Multistep Methods
• Multistep methods use information from

previous steps for improved accuracy
with less work than single step methods

• Need starting procedure that is a single
step method

• Derivation based on interpolation
polynomials which are then integrated

• Predictor-corrector process
• Derivation provides error estimate

6

Review Adams Methods

• Predictor corrector method

• Predictor equation uses four points

 3211 9375955
24 nnnnn

P
n ffff

h
yy

• Corrector equation uses four points
including point n+1 with predicted yP

 211,11 5199
24 nnn

P
nnn

C
n fffyxf

h
yy

Accuracy, Stability and Systems of
Equations

November 20, 2017

ME 501A Seminar in Engineering
Analysis Page 2

7

Review Step Size Control

• Get estimate of truncation error, EC,
from predictor-corrector difference

• If emin ≤ EC ≤ emax, do not change h

• If EC < emin double step size, h

• If EC > emax half step size, h

 C
n

P
nC yyE 11270

19

8

Review Grid Size Changes

• Keep extra values fi-4 and fi-5 in memory to
be ready for grid doubling
– fi-3,new = fi-5; fi-2,new = fi-3; fi-1,new = fi-1; fi,new = fi+1

• Grid halving requires interpolation for
missing values in old grid
– fi-2,new = fi-1; fi,new = fi

 iiiiinewi ffffff 3514070285
128

1
1234,1

 iiiiinewi ffffff 1234,3 2454163
64

1

9

Review Extrapolation Methods

• Use infinite series truncation error
dependence on h to get better estimate
from results on two values of h

• Analyze truncation error as infinite
series and eliminate lowest order term
– True value, t = n(h) + Ahm + Bhm+a

 am

am

m

hB
hnhn

t 1
2

1

12
22

10

Review Midpoint Method

• Take big step from x to x + H in n steps
– Start with results at x and define z0 = y(x)

– Compute z1 = z0 + hf(x, z0)

– Central difference intermediate steps
• zm+1 = zm-1 + 2h(x+mh,zm) m = 1, 2, .. n-1

– Final value at x + H, called yn, is an
average of the central difference value, zn,
and a backward difference value zn-1 +
hf(x+H,zn)

• yn = [zn + zn-1 + hf(x+H,zn)] / 2

11

Review Bulirsch-Stoer Method

• Three main ideas
– Use large step size H and compute results

at x + H for several values of n then
extrapolate results to h = 0

– Use midpoint method whose truncation
error is Ahn + Bhn+2 + Chn+4 … to improve
accuracy of interpolation process

– Use rational function approximation instead
of simple polynomial interpolation for
extrapolating to h = 0

12

Some Basic Concepts
• A finite difference equation is

consistent with the corresponding
differential equation if both equations
give the same result as h 0

• A numerical method is convergent with
the solution of the ODE if the numerical
solution approaches the actual solution
as h 0 (with increase in numerical
precision at smaller h)

• Mainly theoretical concepts

Accuracy, Stability and Systems of
Equations

November 20, 2017

ME 501A Seminar in Engineering
Analysis Page 3

13

More Basic Concepts

• We cannot know the accuracy of
numerical solutions, but we can use
error approximations to control step size

• We know the order of the global
truncation error

• Stability refers to the ability of a
numerical algorithm to damp any errors
introduced during the solution

• Unstable solutions grow without bound
14

More on Stability
• Finite difference equations in numerical

algorithms, when iterated, may
numerically increase without bound

• Stability usually is obtained by keeping
step size h small, sometimes smaller
than the h required for accuracy

• For most ODEs stability is not a
problem, but it is for stiff systems of
ODEs and for partial differential
equations

15

Stability of Exact Solutions

• Exact solutions to differential equations
may be unstable

• Solutions of the form Ceat with a > 0 are
unstable because they grow without
bound as t

• Judge stability of a numerical method by
test on an exact solution that is stable

• Test y’ = -ay whose solution is y = e-at,
where a is a positive constant

16

Euler Solution of Decaying Exponential

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.5 1 1.5 2 2.5 3
x

y

y(0) = 1

y(0) = 2

y(0) = 3

y(0) = 4

y(0) = 5

Euler

Euler algorithm errors move
numerical solution of dy/dx = -y to

solution for another initial
condition. Analytical solution,
decaying exponential, is stable

17

Euler Solution for Increasing Exponential

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3

x

y

y(0) = 1

y(0) = 2

y(0) = 3

y(0) = 4

y(0) = 5

Euler

Euler algorithm errors move
numerical solution of dy/dx = -y to

solution for anohter initial condition.
Analytical solution, increasing

exponential is unstable.

18

Examine Euler Stability
• Look at test equation with y’ = f = -ay
• Exact solution is y = y0e-ax so that y/y0 is

a function of ax
• Euler method: yn+1 = yn + hfn
• With fn = -ayn the Euler method equation

for yn+1, yn+1 = yn + hfn, becomes yn+1 =
yn + h(-ayn) = yn(1 – ah)

• Compare various numerical solutions to
exact solution for different values of ah
in following plot of y/y0 versus ax

Accuracy, Stability and Systems of
Equations

November 20, 2017

ME 501A Seminar in Engineering
Analysis Page 4

19

Stability of Euler Method

-4

-3

-2

-1

0

1

2

3

0 2 4 6 8

ax

y
/y

0

Exact

ah = .5

ah = 1

ah = 1.5

ah = 2

ah = 2.5

20

Chart Observations
• Used Euler method: yn+1 = yn + hfn to

solve y’ = -ay
• For ah 1, method looks physically

realistic if not accurate
• For 1 < ah 2, method is not physically

realistic but is bounded (stable)
• Method is unstable for ah > 2
• Not shown on chart is that we usually

need ah << 2 for accuracy in Euler’s
method

21

General Stability
• Look at trial ODE y’ = f = –ay
• Define growth or amplification factor, G

= yn+1/yn

• Euler method has yn+1 = yn(1 + ah) so G
= yn+1/yn = 1 + ah

• For ah 1 (G 2), method was
physically realistic if not accurate and
method was unstable for ah > 2 (G > 3)

• General approach is to seek relation for
h (or ah) that keeps G stable

22

General Stability II
• Use same test equation with f = -ay with

positive a (negative a is unstable ODE)
• Find amplification factor G for method
• If growth is bounded for any combi-

nation of physical parameters and step
size, h, method is unconditionally stable

• Conditionally stable method is stable
only for some combination of step size
and physical parameters giving step
size limit

23

Implicit Methods
• Contrast between implicit and explicit

methods discussed previously
– Explicit methods find yn+1 in terms of values

at xn (may use estimated y values between
xn and xn+1)

• Implicit methods use fn+1 in algorithm
• Require iterative solution or series

expansion of derivative expression for f
• Examine stability of trapezoid method

for usual test problem y’ = –ay
24

Implicit Stability

• Trapezoid method equation from
previous class – basic equation and
computation with series expansion for fn+1

)(
2

3
11 hOff

h
yy nnnn

n

n
n

nn

y
fh

h
x
f

hf
yy

2
1

2

2

1

Accuracy, Stability and Systems of
Equations

November 20, 2017

ME 501A Seminar in Engineering
Analysis Page 5

25

Implicit Example

• For dy/dx = f = – ay, f/x = 0 and
f/y = –a

ha

hay

ha

hayhay

ah

hay
y

y

f
h

h
x

f
hf

yy

nnn

n
n

n

n
n

nn

2

2

2

22

)(2

02

2

2 2

1

• Here yn+1 = G yn with G = (2 – ha)/(2 + ha)

• |G| < 1 if ha > 0; stable for any h if a > 0
26

Trapezoid Method Stability

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8

ax

y
/y

0

Exact

ah = .5

ah=1

ah = 1.5

ah = 2

ah = 2.5

ah=3

ah=4

y' = -ay for a > 0

27

Chart Observations

• Trapezoid method results much closer
to exact solution than Euler results
– Expected because of O(h3) local error

• For values of ah > 2, solutions
undershoot the final value of y = 0
– Solutions remain stable, but unrealistic,

giving oscillations around y = 0

• Stability is not the same as accuracy

• Must have both
28

Error Control

• How do we choose h to maintain
desired accuracy?

• Want to obtain a result with some
desired small global error

• Can just repeat calculations with smaller
h until two results are sufficiently close

• Can use algorithms that estimate error
and adjust step size during the
calculation based on the error

29

Runge-Kutta Error Control

• Control error by doing integration with h
and 2h along all the integration
– Integration with 2h step requires 3

additional function evaluations per 2 steps

– Analyze local truncation error, which is
O(h5) for both steps, at even step locations

)(120

22)2(

)2(

655
2

65
22

65

hOAhyy

hBhAyhxy

BhAhyhxy

hh

hh

hh

30

Runge-Kutta Error Control II

• y2h – yh = is measure of truncation error

• User specifies D, the desired error
– Many ways to specify this, single value,

relative values, relative to increments for y in
one step

• Since error scales as h5, we can adjust
step size such that hnew = hold|D/|1/5

• Typically use safety factor to avoid making
hnew too large

Accuracy, Stability and Systems of
Equations

November 20, 2017

ME 501A Seminar in Engineering
Analysis Page 6

31

Runge-Kutta-Fehlberg
• Uses two equations to compute yn+1,

one has O(h5), the other O(h6) error
• Requires six derivative evaluations per

step (same evaluations used for both
equations)

• The error estimate can be used for step
size control based on an overall 5th

order error
• Cask-Karp version and Runge-Kutta-

Verner use same idea
32

Runge-Kutta-Fehlberg II

• One algorithm on following slides

• Typical formula components below

• yn+1= yn + (16k1/135 + 6656k2/12825 …

• k3 = hf(xn + 3h/8, yn + 3k1/32 + 9k2/32)

• Error = k1/360 - 128k3/4275 …

• hnew = hold|EDesired/Error|1/4

• EDesired is set by user

• RKF45 code by Watts and Shampine

RKF45 k Equations

33

4
,

4
,

3
8
,

3
32

9
32

12
13

,
1932
2197

7200
2197

7296
2197

,
439
216

8
3680
513

845
4104

2
,

8
27

2
3544
2565

1859
4104

11
40

RKF45 Equations for yn+1 / hnew

34

16
135

6656
12825

23561
56430

9
50

2
55

∗ 25
216

1408
2565

2197
4104 5

• Difference between yn+1 and y*n+1 used
for error estimate to adjust step size
– Rmax is user-specified maximum error per

step
0.84 ∗

⁄

35

Solving Simultaneous ODEs
• Apply same algorithms used for single

ODEs
– Must apply each part of each algorithm

step to all equations in system before
going on to next step

– Key is having consistent x and y values in
determination of fi(x,y)

– All yi values in y must be available at the
same x point when computing the fi

– E.g., in Runge-Kutta we must evaluate k1
for all equations before finding k2

36

Runge-Kutta for ODE System
– y(n) is vector of dependent variables at x = xn

– k(1), k(2), k(3), and k(4), are vectors containing
intermediate Runge-Kutta results

– f is a vector containing the derivatives

– k(1) = hf = hf(xn, y(n))

– k(2) = hf(xn + h/2, y(n) + k(1)/2)

– k(3) = hf(xn + h/2, y(n) + k(2)/2)

– k(4) = hf(xn + h, y(n) + k(3))

– y(n+1) = (k(1) + 2k(2) + 2k(3) + k(4))/6

Accuracy, Stability and Systems of
Equations

November 20, 2017

ME 501A Seminar in Engineering
Analysis Page 7

37

ODE System by RK4

• dy/dx = –y + z and dz/dx = y – z with
y(0) = 1 and z(0) = -1 with h = .1

• Details of first step from y0 to y1

• k(1)y = h[-y + z] = 0.1[-1 + (-1)] = -.2

• k(1)z = h[y - z] = 0.1[1 - (-1)] = .2

• k(2)y = h[-(y+ k(1)y/2) + z + k(1)z/2] = 0.1[
-(1 + -0.2/2) + (-1 + .2/2)] = -.18

• k(2)z = h[(y+ k(1)y/2) –(z + k(1)z/2)] = 0.1[(1
+ -0.2)/2 - (-1 + .2/2)] = .18

38

ODE System by RK4 II

• k(3)y = h[-(y+ k(2)y/2) + z + k(2)z/2] = 0.1[
-(1 + -0.18/2) + (-1 + .18/2)] = -.182

• k(3)z = h[(y+ k(2)y/2) –(z + k(2)z/2)] = 0.1[(1
+ -0.18)/2 - (-1 + .18/2)] = .182

• k(4)y = h[-(y+ k(3)y) + z + k(3)z] = 0.1[-(1 +
-0.182) + (-1 + .182)] = -.1636

• k(4)z = h[(y+ k(3)y) –(z + k(3)z)] = 0.1[(1 +
-0.182) - (-1 + .182)] = .1636

39

ODE System by RK4 III

• yi+1 = yi + (k(1)y + 2k(2)y + 2k(3)y + k(4)y)/6
= 1 + [(–.2) + 2(–.18) + 2(–.182) +
(–.1636)]/6 = .8187 (here i = 0)

• zi+1 = zi + (k(1)z + 2k(2)z + 2k(3)z + k(4)z)/6
= –1 + [(.2) + 2(.18) + 2(.182) +
(.1636)]/6 = –.8187

• Continue in this fashion until desired
final x value is reached
– Note all km computed before any km+1

• No x dependence for f in this example

