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Outline

* Review last class

* Analysis of numerical algorithms

+ Stability of numerical solutions
— Explicit versus implicit approaches

« Step size variation for error control

« Error control for multistep methods with
constant and variable step size

Review Implicit Methods

* Methods discussed previously are
called explicit
— Can find y, ¢ in terms of values at n

— Use predictors to estimate y values
between y, and y, .,

Implicit methods use f,,4 in algorithm
Usually require approximate solution

* Have better stability but require more
work than explicit methods

» Trapezoid method is an example

Californin State [ niversity
Northridge

Review Trapezoid Method

* Algorithm Yoa—Yn = ( fn+1 + fn )h/2 + O(ha)
» Have to handle f,,, dependence of y,,,

- Simple iteration Yin = Yo + [, + £ {0y b2

it (m) Yom- oo N
, yrng_yn_L;n_ﬂ><n+2v_ynﬂ) « Newton ™

L (ma) _(m) !

Voit = Yn: i ion /!
|\n 1 n+l f(x y(m)) hEaf J(m) —IEe_r_a_UP_n,/ ,
-~— Y )=l — /
RREEE A1 ) hfn+g—i h
* Taylor series for f, (Vo =¥)= hot
alitforni State Unhversity 1_77
Northridge 20y}, 4

Review Multistep Methods

Multistep methods use information from
previous steps for improved accuracy
with less work than single step methods

Need starting procedure that is a single
step method

Derivation based on interpolation
polynomials which are then integrated

Predictor-corrector process
Derivation provides error estimate

Californin State [ niversity
Northridge

Review Adams Methods

+ Predictor corrector method
* Predictor equation uses four points

Vi = Yo+ pe(65T,~591,, 371, ~91,.)

* Corrector equation uses four points
including point n+1 with predicted y?

yril = yn + 27h4(9 f (Xml‘ y:+1)+19 fn -5 fn—l + fnfz)

Calrforrsi Sate University
Northridge
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Review Step Size Control

Review Grid Size Changes

+ Get estimate of truncation error, Eg,
from predictor-corrector difference

E.= % (Y:+1 - yr?+1)

* If epin < E¢ < €2 do Not change h
* If E¢ < e, double step size, h
* If E¢ > e, half step size, h

Californin State [niversity
Northridge

» Keep extra values f_, and f,_; in memory to
be ready for grid doubling
—fianew = fisi fiznew = fisi fitnew = fits finew = fist

+ Grid halving requires interpolation for
missing values in old grid
—f f.

i-2,new = |-1; fi,new i

1
fiotnew = E[—Sf‘,‘, +28f,_,—70f, , +140f, , +35f,]

flfﬁ‘new = 671;1[3 fia—16f ,+54f ,+24f - fu]

Calrforrsi Sate Unfversity
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Review Extrapolation Methods

Review Midpoint Method

» Use infinite series truncation error
dependence on h to get better estimate
from results on two values of h

 Analyze truncation error as infinite
series and eliminate lowest order term
— True value, t = n(h) + Ah™ + Bhm*a

tf““f'%)—f‘“‘)+8(l_1)hm+a+...

2" -1 22
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+ Take big step from x to x + H in n steps
— Start with results at x and define z, = y(x)
— Compute z, = z; + hf(x, z;)
— Central difference intermediate steps
* Zpy1 = Zpq +2h(x+mh,z ) m=1,2, .. n-1
— Final value at x + H, called y,, is an
average of the central difference value, z,,
and a backward difference value z,,_; +
hf(x+H,z,)
*y,=[2z,+2z,4+hf(x+H,z,)]/2

Calrforrsi Sate University
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Review Bulirsch-Stoer Method

Some Basic Concepts

e Three main ideas

— Use large step size H and compute results
at x + H for several values of n then
extrapolate results toh =0

— Use midpoint method whose truncation
error is Ah" + Bh™2 + Chn*4 .. to improve
accuracy of interpolation process

— Use rational function approximation instead
of simple polynomial interpolation for
extrapolatingto h =0

Californin State [ niversity
Northridge

+ Afinite difference equation is
consistent with the corresponding
differential equation if both equations
give the same resultas h — 0

* A numerical method is convergent with
the solution of the ODE if the numerical
solution approaches the actual solution
as h — 0 (with increase in numerical
precision at smaller h)

» Mainly theoretical concepts

Calrforrsi Sate University
Northridge
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* We cannot know the accuracy of
numerical solutions, but we can use
error approximations to control step size

* We know the order of the global
truncation error

« Stability refers to the ability of a
numerical algorithm to damp any errors
introduced during the solution

» Unstable solutions grow without bound

ak .’:|--_|N:|I|-I‘:||nr\'.- 13
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More on Stability

« Finite difference equations in numerical
algorithms, when iterated, may
numerically increase without bound

« Stability usually is obtained by keeping
step size h small, sometimes smaller
than the h required for accuracy

* For most ODEs stability is not a
problem, but it is for stiff systems of
ODEs and for partial differential
equations

Calbiforni State University
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Stability of Exact Solutions

» Exact solutions to differential equations
may be unstable

+ Solutions of the form Ce? with a > 0 are
unstable because they grow without
boundast— «

+ Judge stability of a numerical method by
test on an exact solution that is stable

+ Testy’ = -ay whose solution is y = e,
where a is a positive constant

Cabiforni State Unhersity
Nnrthlridge

Euler Solution of Decaying Exponential
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Euler Solution for Increasing Exponential
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Examine Euler Stability

* Look at test equation with y’ = f = -ay

» Exact solution is y = y,e* so that yly, is
a function of ax

» Euler method: y, ., =y, + hf,

» With f, = -ay, the Euler method equation
for Yn+1s Yne1 = Y + hfm becomes Y1 =
Yn + h('ayn) = yn(1 - ah)

» Compare various numerical solutions to
exact solution for different values of ah
in following plot of y/y, versus ax

Calbiforni State University
Nnrthlridge
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Stability of Euler Method

Chart Observations

1 \ — Exact

0 "% —ah=1
1 ah=15

—ah=.5

—ah=2

- —ah=25
3F

» Used Euler method: y,,, =y, + hf, to
solve y’ = -ay

» For ah < 1, method looks physically
realistic if not accurate

» For 1 <ah <2, method is not physically
realistic but is bounded (stable)

* Method is unstable for ah > 2

* Not shown on chart is that we usually
need ah << 2 for accuracy in Euler’s
method

Cal .’:|--_|N:|I|-I‘:||nr\'.- 20
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General Stability

Cabiforni State Unhersity
Nnrthlridge

Look at trial ODE y’ = f = —ay

Define growth or amplification factor, G
= yn+1/yn

Euler method has y,., = y,(1 + ah) so G
= yn+1/yn =1+ah

Forah <1 (G < 2), method was
physically realistic if not accurate and
method was unstable for ah > 2 (G > 3)
General approach is to seek relation for
h (or ah) that keeps G stable

21

General Stability Il

+ Use same test equation with f = -ay with
positive a (negative a is unstable ODE)

» Find amplification factor G for method

* If growth is bounded for any combi-
nation of physical parameters and step
size, h, method is unconditionally stable

+ Conditionally stable method is stable
only for some combination of step size
and physical parameters giving step
size limit

Cal .’:|--_|N:|I|-I‘:||nr\'.- 22
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Implicit Methods

Contrast between implicit and explicit
methods discussed previously

— Explicit methods find y,,,4 in terms of values
at x,, (may use estimated y values between
X, and X .4)

Implicit methods use f,, 4 in algorithm

Require iterative solution or series
expansion of derivative expression for f

Examine stability of trapezoid method
for usual test problem y’ = —ay

23

Implicit Stability

Cabiforni State Unhersity
Nnrthlridge

 Trapezoid method equation from
previous class — basic equation and
computation with series expansion for f_,

h
Ynia =Yn +E(fn + fn+1)+ O(ha)
hf, +ﬁ
X,
h of

20y

2

Yna=Ynt

n
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Implicit Example

» For dy/dx =f =—ay, of/ox = 0 and
offoy = —a

2hfn+g h?
x|, —2hay, +0
Yo =Yt o =Ynt 2-h(-a)
thf‘
ayn

_ Ya(2+ha)-2hay, _y,(2-ha)
- 2+ha © 2+ha

* Herey, .1 = Gy, with G = (2 —ha)/(2 + ha)
* |G| < 1if ha > 0; stable forany hifa>0

25

yho

Trapezoid Method Stability

1.00
— Exact
0.75 | y' = -ay fora>0 —ah=.5
050 | —ah=1
ah=1.5
0.25 —ah=2
000 | —ah =25
’ —ah=3
-0.25 N— —ah=4
-0.50
0 2 4 6 8
ax

26

Chart Observations

» Trapezoid method results much closer
to exact solution than Euler results
— Expected because of O(h?) local error

» For values of ah > 2, solutions
undershoot the final value of y =0

— Solutions remain stable, but unrealistic,
giving oscillations around y = 0

« Stability is not the same as accuracy
* Must have both

Californin State [ niversity 27
Northridge

Error Control

* How do we choose h to maintain
desired accuracy?

Want to obtain a result with some
desired small global error

» Can just repeat calculations with smaller
h until two results are sufficiently close
Can use algorithms that estimate error
and adjust step size during the
calculation based on the error

Calrforrsi Sate University 28
Northridge

Runge-Kutta Error Control

+ Control error by doing integration with h
and 2h along all the integration

— Integration with 2h step requires 3
additional function evaluations per 2 steps

— Analyze local truncation error, which is
O(h?®) for both steps, at even step locations
Y, (x+2h) =y, + Ah® + Bh® +...
Yon (X+2h) =y, + A(2h) +B(2h) +---
0=y, -y, +(2° ~1)An® + O(h)

Californin State [ niversity
Northridge

29

Runge-Kutta Error Control Il

* Von — Yh = A is measure of truncation error

* User specifies Ap, the desired error
— Many ways to specify this, single value,
relative values, relative to increments for y in
one step
+ Since error scales as h®, we can adjust
step size such that h,,, = h4|Ap/A|"?
+ Typically use safety factor to avoid making
h,e t0O large

30
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Runge-Kutta-Fehlberg

» Uses two equations to compute y,,,4,
one has O(h®), the other O(h®) error

* Requires six derivative evaluations per
step (same evaluations used for both
equations)

» The error estimate can be used for step
size control based on an overall 5t
order error

» Cask-Karp version and Runge-Kutta-
Verner use same idea

Californin State [niversity 31
Northridge

Runge-Kutta-Fehlberg |l

One algorithm on following slides
Typical formula components below

* Voet= Y, t (16k,/135 + 6656k,/12825 ...
* k3 = hf(x, + 3h/8, y, + 3k,/32 + 9k,/32)
* Error = k,/360 - 128k,/4275 ...

¢ hnew = holdlEDesired/Error|1/4

* Epesireq 1S S€t DY USET

* RKF45 code by Watts and Shampine

Calrforrsi Sate Unfversity 32
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RKF45 k Equations

h ky
ke = hf G ) ke =hf (xnt 3+ 7

3h 3k, | 9%k,
k3 :hf Xn+?,yn +§+§
12h 1932k, 7200k, 7296ks
k“:hf(x"J“f'y“J“ 2197 2197 | 2197 )
439k, 3680k; 845k,
ks :hf(x"+h‘y“+ 216 et 513 4104)

o nr (e ol 8k, 354k 1859k, 1lks
s =hf (¥ +3m=%7 2779565 ' 4104 40

Californin State [ niversity 33
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)

RKF45 Equations for y,,.4 / h, .,

16k, 6656k; 23561k, 9ks 2k
. 3 B3 o)

Ynrr =¥t T35 o895 Y 56430 50 55

L 2k 1408ky 2197ky ks oo,
Yner =¥nt 515t Seee t a0z 5 O

+ Difference between y, ., and y*,,,used
for error estimate to adjust step size
— Rihax IS user-specified maximum error per
ste
p hRmax )1/4

[¥n+1 = Yl

hnew = 0-84hold<

Calrforrsi Sate University 34
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Solving Simultaneous ODEs

* Apply same algorithms used for single

ODEs

— Must apply each part of each algorithm
step to all equations in system before
going on to next step

— Key is having consistent x and y values in
determination of fi(x,y)

— All y, values in y must be available at the
same x point when computing the f;

— E.g., in Runge-Kutta we must evaluate k;
for all equations before finding k,

Californin State [ niversity 35
Northridge

Runge-Kutta for ODE System

- ¥ is vector of dependent variables at x = x,,

- !‘(1)’ Ky |f(3), and k4, are vectors containing
intermediate Runge-Kutta results

—f is a vector containing the derivatives

=Ky = hf = hf(x,, Ym)

—Kpy = hf(x, + h/2, y o + K4y/2)

=K@ = hf(x, + h/2, y ) + K)/2)

=Ky = hf(x,+ h, y) + Kg)

—=Yine1) = Ky + 2K+ 2K ) + K))/6

36
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+ dy/dx = -y + z and dz/dx = y — z with
y(0) = 1 and z(0) = -1 with h = .1

* Details of first step from y, to y,

* Koy =hly +2] = 0.1[-1 + (-1)] = -.2

* Kq =hly-2z]=01[1-(-1)]= .2

* Kayy = hi-(y+ k), /2) + 2 + Kir),/2] = 0.1]

-(1+-0.2/2) + (-1 + .2/2)] =-.18

* Ky = l(y+ k1), /2) (2 + Ki1y,/2)] = 0.1[(1

+-02)/2 -(-1+.2/2)]= .18

Northridge

ODE System by RK4 I

¢ k(3)y = h[_(y+ k(2)y/2) +z+ k(2)Z/2] = 01[
«(1+-0.18/2) + (-1 + .18/2)] = -.182

* Ky, = h[(y+ Kp/2) =(Z + Kp,/2)] = 0.1[(1
+-0.18)/2 - (-1 + .18/2)] = .182

* Ky = hl-(y+ Kg),) + 2 + Kz ] = 0.1 -(1 +
-0.182) + (-1 + .182)] =-.1636

* Kay, = hl(y+ Kgg)y) =2 + k)1 = 0.1[ (1 +
-0.182) - (-1 + .182)] = .1636

Calrforrsi Sate Unfversity 38
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ODE System by RK4 11|

* Vi TVt (K + 2K, + 2K, + Ky, )/6
=1 +[ (-2) + 2(-.18) + 2(-.182) +
(-.1636))/6 = .8187 (herei=0)

* 2 =z (K, + 2K, + 2Kia), + K, )/6
=—1+[(.2) +2(.18) + 2(.182) +
(.1636)]/6 = —.8187

+ Continue in this fashion until desired
final x value is reached
— Note all k,, computed before any k.

* No x dependence for f in this example

Californs .|N:|I|-I':||nv»'.- 39
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